144 research outputs found

    Language impairments in people with autoimmune neurological diseases:A scoping review

    Get PDF
    INTRODUCTION: Autoimmune neurological diseases (ANDs) are a specific type of autoimmune disease that affect cells within the central and peripheral nervous system. ANDs trigger various physical/neuropsychiatric symptoms. However, language impairments in people with ANDs are not well characterized. Here we aimed to determine the kinds of language impairment that most commonly emerge in 10 ANDs, the characteristics of the patients (demographic, neurological damage), and the assessment methods used.METHODS: We followed the PRISMA Extension for Scoping Reviews (PRISMA-ScR). PubMed and Google Scholar were searched. We used a list of search terms containing 10 types of ANDs (e.g., multiple sclerosis, acute disseminated encephalomyelitis) in combination with the terms aphasia, dysphasia, fluency, language, listening, morphology, phonology, pragmatics, reading, semantics, speaking, syntax, writing. The reference lists and citations of the relevant papers were also investigated. The type of AND, patient characteristics, neurological damage and examination technique, language tests administered, and main findings were noted for each study meeting the inclusion criteria.RESULTS: We found 171 studies meeting our inclusion criteria. These comprised group studies and case studies. Language impairments differed largely among types of ANDs. Neurological findings were mentioned in most of the papers, but specific language tests were rarely used.CONCLUSIONS: Language symptoms in people with ANDs are commonly reported. These are often not full descriptions or only focus on specific time points in the course of the disease. Future research needs to assess specific language functions in people with ANDs and relate their language impairments to brain damage at different stages of disease evolution.</p

    Fully automated delineation of the optic radiation for surgical planning using clinically feasible sequences

    Full text link
    [EN] Quadrantanopia caused by inadvertent severing of Meyer's Loop of the optic radiation is a well-recognised complication of temporal lobectomy for conditions such as epilepsy. Dissection studies indicate that the anterior extent of Meyer's Loop varies considerably between individuals. Quantifying this for individual patients is thus an important step to improve the safety profile of temporal lobectomies. Previous attempts to delineate Meyer's Loop using diffusion MRI tractography have had difficulty estimating its full anterior extent, required manual ROI placement, and/or relied on advanced diffusion sequences that cannot be acquired routinely in most clinics. Here we present CONSULT: a pipeline that can delineate the optic radiation from raw DICOM data in a completely automated way via a combination of robust pre-processing, segmentation, and alignment stages, plus simple improvements that bolster the efficiency and reliability of standard tractography. We tested CONSULT on 696 scans of predominantly healthy participants (539 unique brains), including both advanced acquisitions and simpler acquisitions that could be acquired in clinically acceptable timeframes. Delineations completed without error in 99.4% of the scans. The distance between Meyer's Loop and the temporal pole closely matched both averages and ranges reported in dissection studies for all tested sequences. Median scan-rescan error of this distance was 1¿mm. When tested on two participants with considerable pathology, delineations were successful and realistic. Through this, we demonstrate not only how to identify Meyer's Loop with clinically feasible sequences, but also that this can be achieved without fundamental changes to tractography algorithms or complex post-processing methods.Advance Queensland, Grant/Award Number: R-09964-01; Fundacion Merck Salud; Proyecto Societat Catalana Neurologia; Ministerio de Economia, Industria y Competitividad of Spain, Grant/Award Number: DPI2017-87743-R; Red Espanola de Esclerosis Multiple, Grant/Award Numbers: RD12/0032/0002, RD12/0060/01-02, RD16/0015/0002, RD16/0015/0003; Spanish Government; Instituto de Salud Carlos III, Grant/Award Numbers: FIS 2015 PI15/00061, FIS 2015 - PI15/00587, FIS 2018 - PI18/01030Reid, LB.; Martínez-Heras, E.; Manjón Herrera, JV.; Jeffree, RL.; Alexander, H.; Trinder, J.; Solana, E.... (2021). Fully automated delineation of the optic radiation for surgical planning using clinically feasible sequences. Human Brain Mapping. 42(18):5911-5926. https://doi.org/10.1002/hbm.25658S59115926421

    White matter changes measured by multi-component MR Fingerprinting in multiple sclerosis

    Get PDF
    T2-hyperintense lesions are the key imaging marker of multiple sclerosis (MS). Previous studies have shown that the white matter surrounding such lesions is often also affected by MS. Our aim was to develop a new method to visualize and quantify the extent of white matter tissue changes in MS based on relaxometry properties. We applied a fast, multi-parametric quantitative MRI approach and used a multi-component MR Fingerprinting (MC-MRF) analysis. We assessed the differences in the MRF component representing prolongedrelaxation time between patients with MS and controls and studied the relation between this component's volume and structural white matter damage identified on FLAIR MRI scans in patients with MS. A total of 48 MS patients at two different sites and 12 healthy controls were scanned with FLAIR and MRF-EPI MRI scans. MRF scans were analyzed with a joint-sparsity multi-component analysis to obtain magnetization fraction maps of different components, representing tissues such as myelin water, white matter, gray matter and cerebrospinal fluid. In the MS patients, an additional component was identified with increased transverse relaxation times compared to the white matter, likely representing changes in free water content. Patients with MS had a higher volume of the long- component in the white matter of the brain compared to healthy controls (B (95%-CI) = 0.004 (0.0006–0.008), p = 0.02). Furthermore, this MRF component had a moderate correlation (correlation coefficient R 0.47) with visible structural white matter changes on the FLAIR scans. Also, the component was found to be more extensive compared to structural white matter changes in 73% of MS patients. In conclusion, our MRF acquisition and analysis captured white matter tissue changes in MS patients compared to controls. In patients these tissue changes were more extensive compared to visually detectable white matter changes on FLAIR scans. Our method provides a novel way to quantify the extent of white matter changes in MS patients, which is underestimated using only conventional clinical MRI scans.</p

    Influence of corpus callosum damage on cognition and physical disability in multiple sclerosis: a multimodal study.

    Get PDF
    Background Corpus callosum (CC) is a common target for multiple sclerosis (MS) pathology. We investigated the influence of CC damage on physical disability and cognitive dysfunction using a multimodal approach. Methods Twenty-one relapsing-remitting MS patients and 13 healthy controls underwent structural MRI and diffusion tensor of the CC (fractional anisotropy; mean diffusivity, MD; radial diffusivity, RD; axial diffusivity). Interhemisferic transfer of motor inhibition was assessed by recording the ipsilateral silent period (iSP) to transcranial magnetic stimulation. We evaluated cognitive function using the Brief Repeatable Battery and physical disability using the Expanded Disability Status Scale (EDSS) and the MS Functional Composite (MSFC) z-score. Results The iSP latency correlated with physical disability scores (r ranged from 0.596 to 0.657, P values from 0.004 to 0.001), and with results of visual memory (r = −0.645, P = 0.002), processing speed (r = −0.51, P = 0.018) and executive cognitive domain tests (r = −0.452, P = 0.039). The area of the rostrum correlated with the EDSS (r = −0.442, P = 0.045). MD and RD correlated with cognitive performance, mainly with results of visual and verbal memory tests (r ranged from −0.446 to −0.546, P values from 0.048 to 0.011). The iSP latency correlated with CC area (r = −0.345, P = 0.049), volume (r = −0.401, P = 0.002), MD (r = 0.404, P = 0.002) and RD (r = 0.415, P = 0.016). Conclusions We found evidence for structural and microstructural CC abnormalities associated with impairment of motor callosal inhibitory conduction in MS. CC damage may contribute to cognitive dysfunction and in less extent to physical disability likely through a disconnection mechanism

    Applying multilayer analysis to morphological, structural, and functional brain networks to identify relevant dysfunction patterns

    Get PDF
    In recent years, research on network analysis applied to MRI data has advanced significantly. However, the majority of the studies are limited to single networks obtained from resting-state fMRI, diffusion MRI, or gray matter probability maps derived from T1 images. Although a limited number of previous studies have combined two of these networks, none have introduced a framework to combine morphological, structural, and functional brain connectivity networks. The aim of this study was to combine the morphological, structural, and functional information, thus defining a new multilayer network perspective. This has proved advantageous when jointly analyzing multiple types of relational data from the same objects simultaneously using graph- mining techniques. The main contribution of this research is the design, development, and validation of a framework that merges these three layers of information into one multilayer network that links and relates the integrity of white matter connections with gray matter probability maps and resting-state fMRI. To validate our framework, several metrics from graph theory are expanded and adapted to our specific domain characteristics. This proof of concept was applied to a cohort of people with multiple sclerosis, and results show that several brain regions with a synchronized connectivity deterioration could be identified

    The multiple sclerosis visual pathway cohort: understanding neurodegeneration in MS

    Get PDF
    BACKGROUND: Multiple Sclerosis (MS) is an immune-mediated disease of the Central Nervous System with two major underlying etiopathogenic processes: inflammation and neurodegeneration. The latter determines the prognosis of this disease. MS is the main cause of non-traumatic disability in middle-aged populations. FINDINGS: The MS-VisualPath Cohort was set up to study the neurodegenerative component of MS using advanced imaging techniques by focusing on analysis of the visual pathway in a middle-aged MS population in Barcelona, Spain. We started the recruitment of patients in the early phase of MS in 2010 and it remains permanently open. All patients undergo a complete neurological and ophthalmological examination including measurements of physical and disability (Expanded Disability Status Scale; Multiple Sclerosis Functional Composite and neuropsychological tests), disease activity (relapses) and visual function testing (visual acuity, color vision and visual field). The MS-VisualPath protocol also assesses the presence of anxiety and depressive symptoms (Hospital Anxiety and Depression Scale), general quality of life (SF-36) and visual quality of life (25-Item National Eye Institute Visual Function Questionnaire with the 10-Item Neuro-Ophthalmic Supplement). In addition, the imaging protocol includes both retinal (Optical Coherence Tomography and Wide-Field Fundus Imaging) and brain imaging (Magnetic Resonance Imaging). Finally, multifocal Visual Evoked Potentials are used to perform neurophysiological assessment of the visual pathway. DISCUSSION: The analysis of the visual pathway with advance imaging and electrophysilogical tools in parallel with clinical information will provide significant and new knowledge regarding neurodegeneration in MS and provide new clinical and imaging biomarkers to help monitor disease progression in these patients

    Assessing biological and methodological aspects of brain volume loss in multiple sclerosis

    Get PDF
    Importance: Before using brain volume loss (BVL) as a marker of therapeutic response in multiple sclerosis (MS), certain biological and methodological issues must be clarified. Objectives: To assess the dynamics of BVL as MS progresses and to evaluate the repeatability and exchangeability of BVL estimates with Jacobian Integration (JI) and Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL) (specifically, the Structural Image Evaluation, Using Normalisation, of Atrophy-Cross-Sectional [SIENA-X] tool or FMRIB's Integrated Registration and Segmentation Tool [FIRST]). Design, Setting, and Participants: A cohort of patients who had either clinically isolated syndrome or MS was enrolled from February 2011 through October 2015. All underwent a series of annual magnetic resonance imaging (MRI) scans. Images from 2 cohorts of healthy volunteers were used to evaluate short-term repeatability of the MRI measurements (n = 34) and annual BVL (n = 20). Data analysis occurred from January to May 2017. Main Outcomes and Measures: The goodness of fit of different models to the dynamics of BVL throughout the MS disease course was assessed. The short-term test-retest error was used as a measure of JI and FSL repeatability. The correlations (R2) of the changes quantified in the brain using JI and FSL, together with the accuracy of the annual BVL cutoffs to discriminate patients with MS from healthy volunteers, were used to measure compatibility of imaging methods. Results: A total of 140 patients with clinically isolated syndrome or MS were enrolled, including 95 women (67.9%); the group had a median (interquartile range) age of 40.7 (33.6-48.1) years. Patients underwent 4 MRI scans with a median (interquartile range) interscan period of 364 (351-379) days. The 34 healthy volunteers (of whom 18 [53%] were women; median [IQR] age, 33.5 [26.2-42.5] years) and 20 healthy volunteers (of whom 10 [50%] were women; median [IQR] age, 33.0 [28.7-39.2] years) underwent 2 MRI scans within a median (IQR) of 24.5 (0.0-74.5) days and 384.5 (366.3-407.8) days for the short-term and long-term MRI follow-up, respectively. The BVL rates were higher in the first 5 years after MS onset (R2 = 0.65 for whole-brain volume change and R2 = 0.52 for gray matter volume change) with a direct association with steroids (β = 0.280; P = .02) and an inverse association with age at MS onset, particularly in the first 5 years (β = 0.015; P = .047). The reproducibility of FSL (SIENA) and JI was similar for whole-brain volume loss, while JI gave more precise, less biased estimates for specific brain regions than FSL (SIENA-X and FIRST). The correlation between whole-brain volume loss using JI and FSL was high (R2 = 0.92), but the same correlations were poor for specific brain regions. The area under curve of the whole-brain volume change to discriminate between patients with MS and healthy volunteers was similar, although the thresholds and accuracy index were distinct for JI and FSL. Conclusions and Relevance: The proposed BVL threshold of less than 0.4% per year as a marker of therapeutic efficiency should be reconsidered because of the different dynamics of BVL as MS progresses and because of the limited reproducibility and variability of estimates using different imaging methods

    Intense long-term training impairs brain health compared with moderate exercise: Experimental evidence and mechanisms

    Full text link
    The consequences of extremely intense long-term exercise for brain health remain unknown. We studied the effects of strenuous exercise on brain structure and function, its dose-response relationship, and mechanisms in a rat model of endurance training. Five-week-old male Wistar rats were assigned to moderate (MOD) or intense (INT) exercise or a sedentary (SED) group for 16 weeks. MOD rats showed the highest motivation and learning capacity in operant conditioning experiments; SED and INT presented similar results. In vivo MRI demonstrated enhanced global and regional connectivity efficiency and clustering as well as a higher cerebral blood flow (CBF) in MOD but not INT rats compared with SED. In the cortex, downregulation of oxidative phosphorylation complex IV and AMPK activation denoted mitochondrial dysfunction in INT rats. An imbalance in cortical antioxidant capacity was found between MOD and INT rats. The MOD group showed the lowest hippocampal brain-derived neurotrophic factor levels. The mRNA and protein levels of inflammatory markers were similar in all groups. In conclusion, strenuous long-term exercise yields a lesser improvement in learning ability than moderate exercise. Blunting of MOD-induced improvements in CBF and connectivity efficiency, accompanied by impaired mitochondrial energetics and, possibly, transient local oxidative stress, may underlie the findings in intensively trained rats

    Predictors of vision impairment in Multiple Sclerosis.

    Get PDF
    Visual impairment significantly alters the quality of life of people with Multiple Sclerosis (MS). The objective of this study was to identify predictors (independent variables) of visual outcomes, and to define their relationship with neurological disability and retinal atrophy when assessed by optical coherence tomography (OCT). We performed a cross-sectional analysis of 119 consecutive patients with MS, assessing vision using high contrast visual acuity (LogMar), 2.5% and 1.25% low contrast visual acuity (Sloan charts), and color vision (Hardy-Rand-Rittler plates). Quality of vision is a patient reported outcome based on an individual's unique perception of his or her vision and was assessed with the Visual Functioning Questionnaire-25 (VFQ-25) with the 10 neuro-ophthalmologic items. MS disability was assessed using the expanded disability status scale (EDSS), the MS functional composite (MSFC) and the brief repetitive battery-neuropsychology (BRB-N). Retinal atrophy was assessed using spectral domain OCT, measuring the thickness of the peripapillar retinal nerve fiber layer (pRNFL) and the volume of the ganglion cell plus inner plexiform layer (GCIPL). The vision of patients with MS was impaired, particularly in eyes with prior optic neuritis. Retinal atrophy (pRNFL and GCIPL) was closely associated with impaired low contrast vision and color vision, whereas the volume of the GCIPL showed a trend (p = 0.092) to be associated with quality of vision. Multiple regression analysis revealed that EDSS was an explanatory variable for high contrast vision after stepwise analysis, GCIPL volume for low contrast vision, and GCIPL volume and EDSS for color vision. The explanatory variables for quality of vision were high contrast vision and color vision. In summary, quality of vision in MS depends on the impairment of high contrast visual acuity and color vision due to the disease

    Analysis of prognostic factors associated with longitudinally extensive transverse myelitis

    Get PDF
    Abstract Objective: The aim of this study is to report the clinical profile and outcome of longitudinally extensive transverse myelitis (LETM). Methods: We prospectively studied adult patients who presented with LETM from January 2008 to December 2011. Information on demographic, clinical course, magnetic resonance imaging (MRI) and outcome was collected. HLA-DRB1 genotype was compared with those of 225 normal controls and patients with MS (228) and neuromyelitis optica (NMO) (22). Results: In total, 23 patients (16 female) with a median age of 44.5 years (range: 20–77 years) were included. Most (74%) had moderate–severe disability at nadir (48% non-ambulatory), normal/non-multiple sclerosis (MS) brain MRI (96%) and a median MRI cord lesion of 5 vertebral segments (range: 3–19). Laboratory analysis showed cerebrospinal fluid pleocytosis (45%), NMO-IgG (9%), antinuclear antibodies (70%), and genotype HLA-DRB1*13 (57%). The frequency of DRB1*13 genotype was higher compared with controls (p=0.002), MS (p=0.001) and NMO (p= 0.003) patients. After a median follow-up of 32 months, one patient converted to MS, two had relapsing LETM with NMO-IgG, and 20 remained as idiopathic with recurrences in four (20%). Twelve (52%) patients recovered with minimal disability (Expanded Disability Status Scale (EDSS) <2.5) and three (13%) remained wheelchair dependent. Disability at nadir was associated with the final outcome and extension of the spinal cord lesion with risk of recurrence. Recurrence was not associated with worse outcome. Conclusions: Inflammatory LETM is mostly idiopathic with a good outcome. It includes a relatively homogenous group of patients with an overrepresentation of the HLA-DRB1*13 genotype. EDSS at nadir is a predictor of the final outcome and extension of the myelitis of the recurrence risk
    • …
    corecore